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Abstract

A moment method is presented for handling arbitrarily shaped
2D and 3D waveguides that involve conductors, finite-size
dielectric regions, or both. A novel procedure for modeling the
dielectric allows 2D rooftop functions to represent both the 3D
polarization current in the dielectric and the surface current on
the conductors. Examples include microstrip and dielectric
waveguides. Numerical convergence, consistency with physical
principles, and agreement with the literature are demonstrated.

INTRODUCTION

In calculating the scattering or guided-wave properties of
microwave structures using moment methods, dielectric regions
must often be considered.  Stratified dielectrics may be
accounted for by Greens functions that involve Sommerfeld
integrations [1]. For dielectric regions having regular shape,
modal expansions and field matching procedures may be
employed [2]. Irregularly shaped regions, however, may require
the use of subsectional basis function to either represent the
dielectric interfaces or the dielectric volume through the
polarization currents {3-5].

The volume formulations, because of limitations associated
with their current expansion functions, may not be well suited
for a guided-wave analysis. Pulse functions give rise to fictitious
charge whose effect may not be a concern in the far field [3],
but may cause serious problems in the near field. Though
tetrahedral [4] or 3D rooftop functions [5] do not produce
fictitious charge, a second set of basis functions would be
needed to represent the surface conduction currents; and to the
author’s knowledge, neither basis function has been employed in
a guided wave analysis. We propose a novel volume polarization
formulation that offers significant advantages over the previous
approaches. The versatility and accuracy of the approach are
then demonstrated though the analysis of representative
structures.

MODELING THE DIELECTRIC

The dielectric region is first replaced by an equivalent
structure that supports surface, as opposed to volume, currents.
The same surface current basis functions can therefore be used
to represent both the polarization current in the dielectric and
the currents on any conductors. This offers mathematical
simplicity and further, allows us to make use moment method
solutions already available in the literature. Second, the
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presence of fictitious charge can be avoided by a proper choice
of basis function (rooftop function).

To represent the volume polarization with surface currents,
the dielectric region is replaced by a 3D version of the thin-wall
mechanism Harrington and Mautz employed to model dielectric
shells [6]. As shown in Fig. 1, the dielectric is subdivided into
sections along the Cartesian coordinates, so that the region is
now comprised of 3D cells having dimensions 7,, 7,, and 7,. If we
conceptually think of the dielectric material as being pushed out
from the center of each cell until it is compressed to zero
thickness on the cell walls, a new structure is formed that is
composed only of these zero-thickness cell walls. During
compression, as the wall thickness, 8, goes to zero, the dielectric
constant of the material in the wall goes to infinity as 1/8.
Provided the grid is sufficiently fine with respect to wavelength
and to feature size, and provided that an appropriate sheet
impedance is used to describe the cell walls, this new structure is
electrically equivalent to the solid dielectric. (We justify this
equivalence in the next section.) Since the dielectric and its
cellular replacement are equivalent, we proceed to model not the
solid dielectric but the equivalent structure. Because the cell
walls have zero thickness, the currents that flow are precisely the
2D, surface currents that we desire.

JUSTIFICATION OF CELLULAR REPLACEMENT

The purpose of this section is convince the reader, through
related examples and physical reasoning, that the cellular
replacement is valid, that the accuracy of the solution technique
is related to grid size, and that no formal proof is required.

The use of 2D currents to model 3D polarization currents is
analogous to the modeling of a surface by a wire grid [7]. In
wire~grid models, 1D basis functions are used to represent a 2D
region. A serious drawback exists with wire grid modeling,
however, because the field at the surface of a line current is
singular. To circumvent this problem, the wires must be given
an effective radius, and this may be accomplished by testing the
electric field at points radially offset from their centers.
Unfortunately, results are sensitive to the wire radius; fine
tuning is often required to get reasonable results. Consider now
a 3D grid of resistors that might be used to represent a resistive
volume for the purposes of a current flow analysis.

Such a grid is actually nothing more than a wire-grid model of
the volume, where the resistive material is lumped in 1D
filaments that intersect at points. The value of each resistor
could be taken as that across a 7,-by-7,-by-7, cell, with the
direction of current flow determining which cell dimension (7,



Figure 1. Dielectric subdivision, with one cell removed for illustrative
purposes.

7, , OI 7,) serves as the length and which others form the area for
a parallel plate resistance calculation. Now, if we used an array
of zero-thickness rectangular sheets instead of filaments to
model the volume, we would be employing the -cellular
replacement discussed earlier, except that it would apply to a
resistive, not dielectric, volume. Each cell wall, in this case,
would have to be attributed appropriate sheet resistances.

To solve electromagnetic problems with such grids, we can
develop moment method solutions by applying the electric field
boundary conditions; we would do this near the surface of each
filament for a wire-grid model and at the surface of each cell
wall for the cellular model. The use of 2D surfaces to model a
volume is superior to a wire grid model, because the field of a
surface current is not singular; the cellular approach does not
require the fine tuning that a wire-grid model does.

Regarding the accuracy associated with the use of such grids,
consider first the wire-grid resistive model. From experience, we
know that for DC analyses we can achieve any desired degree of
accuracy by choosing a fine enough grid. We would expect the
same for the cellular model. Based on our understanding and
experience with moment techniques, we expect that for an
electromagnetic analysis, the wire-grid model, if properly
formed, would also give improved accuracy as the grid size is
reduced. We have no reason to believe that this would not be
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the case for the cellular model, which as described above is
superior to the wire-grid model. We will further support this
claim through numerical results.

In a sense, two sources of error exist in our approach; that
associated with the cellular replacement and that associated with
solving for the field of the equivalent structure. Both errors
should approach zero as the grid size is reduced. To find the
appropriate grid size, we compare numerical results against
others in the literature and perform numerical convergence
studies. We will show that even a relatively coarse grid gives
results that range from excellent for purely dielectric structures,
to well within engineering accuracy for composite structures.
Many solution techniques involve grids; we just choose to apply
a grid prior to the numerical solution stage.

As a further justification, consider the dielectric composition
of high speed coaxial cable. Teflon is impregnated with air
bubbles to reduce its effective dielectric constant. For all intents
and purposes, at typical frequencies the dielectric appears
homogeneous.  This provides a practical example of an
inhomogeneous material that is electrically equivalent to one that
is homogeneous. Other examples can be found in the study of
artificial dielectrics.

CHOOSING A SHEET IMPEDANCE

We chose a sheet impedance (or equivalently the surface
impedance because the cell walls have zero thickness) such that
the impedance is the same between two planes that sandwich a
cell of either the solid dielectric or cellular replacement and
include only that contribution related to the volume polarization,
or in other words, we omit the free space contribution [3]. From
Fig. 1, each cell wall is associated with two surface impedances.
The surface impedance along x, R, is given by

Rsx=2(7iy+7iz)/[/weo(e,—1)] 1

where w is the angular frequency, ¢, is the permittivity of free
space, &, is a relative dielectric constant and exp(jwt) is the time
dependence. Through permutation of x,y, and z, (1) also gives
the surface impedances along y and z, namely R,, and R,,. For
walls common to two cells, the impedance would be an
appropriate parallel combination. Lossy dielectrics (or for that
matter, lossy conductor volumes) could be handled through
appropriate choice of a complex permittivity.

The electric field boundary condition, applied over each
diclectric cell wall and conductor surface, is

E-J R =0 (2)

where E is the tangential electric field, J, is the surface current
density, and R, is the appropriate surface impedance. For
dielectric volumes, R, is either R,, R,, or R.; for perfect
conductors, R, is zero, but for imperfect conductors it may be
determined through skin-effect considerations.



ROOFTOP REPRESENTATION AND GUIDED WAVE
FORMULATION

On a dielectric or conductive surface, both full- and
half-rooftops [8-10] (Fig. 2) may appear. To guarantee a
smoother current distribution, we force the current to be
continuous around bends by combining half-rooftops to form
corner functions (Fig. 3). Internal to dielectric volumes are
edges, or junctions, where three or four cell walls may intersect.
At an external edge, only one corner function is needed (Fig.
3a). At three- and four-junctions, respectively, two and three
corner functions are used, as shown in Fig. 3b,c. Because
current flows continuously around each corner function, the
total current into a junction must be zero; using more than two
and three corner functions, respectively, would overspecify the
current and ultimately lead to a singular matrix.

The guided wave formulation is the same one already
described in the literature [8,9,11,12], except for the inclusion of
R, in equation (2). An appropriate unit cell is defined for the
structure, and a moment method solution is developed that leads
to a eigenvalue matrix equation of the form

Zk)I=0, 3
where k, is the propagation constant or eigenvalue, Z is an
impedance matrix, and I is a column vector of current
coefficients. A Newton search is employed to find k,, which
must satisfy det(Z)=0, and then substituted back into (3) to
obtain the current distribution. In the solution, the unit cell is
divided in §,, §,, and S, along the x, y, and z directions,
respectively.

In the following examples, propagation is along the x
direction. Rooftop current elements represent the currents in
the x-y, y-z, and x-z planes. For the 2D structures, currents
appear only on the x-z and x-y planes and only one subdivision
along x is used (S,=1); the x-directed currents will be
represented only by full rooftops along the x direction,

NUMERICAL RESULTS AND DISCUSSION

The first example is a coaxial cable filled with a dielectric
material having £,=100, with the inside conductor having square
crosssection and side b and the shield having square crosssection
and side 2b. For b/A=0.00067 (ie, low frequency), k, and the
per unit length capacitance C were calculated for various grid
sizes. As the grid in the crosssection is made finer, from a
4-by-4 to a 32-by-32 subdivision, k,/k, monotonically decreases
from 10.95 to 10.04 and C decreases from 106.1 pF/cm to 91.4
pF/cm; the exact solution, based on TEM propagation and 2D
capacitance calculation, is k,/k;=10 and C = 90.49 pF/cm. In
the above, k, and A, are the wavevector and wavelength in free
space, respectively. The polarization charge in the dielectric, as
expected for a homogeneous medium, is negligible.
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Full rooftop

Figure 2. A section of b howing full and half-rooftop elements
and integration paths,
Corner
Function
a)
b) c)
Figure 3. Representation of junction current. a) At external edge. b)

At three-junction. c¢) At four-junction.

The next structure considered is the microstrip of Fig. 4,
which displays an interesting peak in effective dielectric constant
g5 that is not predicted from static capacitance calculation. A
300-by-4-by-1 grid yields agreement to within four percent of
that obtained using the approach of Gurel [1]. A square
dielectric waveguide (Fig. 5) is then analyzed and compared
with the results of Goell [2]. A similar, but hollow structure
(hollow region is a/2 by a/2 and centered) is also analyzed. A
periodic array of holes is then introduced into the solid
waveguide, with the first stopband plotted in the figure. The
grid used corresponds to an 8-by-8-by-1 breakup for the 2D
problems, and an 8-by-8-by-4 breakup for the 3D problem. As
expected, for wavelengths below that corresponding to the
stopband (at 1.75 on the independent axis), this structure’s
propagation constant falls between that for the solid and hollow
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Figure 4. Effective dielectric constant in microstrip structure (w,=0.01

cm, t=0.002 cm, ¢,=2.0, f=1.0 GHz).
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Figure 5. Propagation constant for square dielectric waveguide with and
without periodic array of holes (¢,=2.25).
cases. Near the stopband, as also expected, the curve rises
dramatically.
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