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Abstract

A moment method is presented for handling arbitrarily shaped

2D and 3D waveguides that involve conductors, finite-size

dielectric regions, or both. A novel procedure for modefing the

dielectric aflows 2D rooftop functions to represent both the 3D

polarization current in the dielectric and the surface current on

the conductors. Examples include tnicrostrip and dielectric

waveguides. Numerical convergence, consistency with physical

principles, and agreement with the literature are demonstrated.

INTRODUCTION

In calculating the scattering or guided-wave properties of

microwave structures using moment methods, dielectric regions

must often be considered. Stratified dielectrics may be

accounted for by Greens functions that involve Sommerfeld

integrations [1]. For dielectric regions having regular shape,

modal expansions and field matching procedures may be

employed [2]. Irregularly shaped regions, however, may require

the use of subsectional basis function to either represent the

dielectric interfaces or the dielectric volume through the

polarization currents [3-5].

The volume formulations, because of limkations associated

with their current expansion functions, may not be well suited

for a guided-wave analysis. Puke functions give rise to fictitious

charge whose effect may not be a concern in the far field [3],

but may cause serious problems in the near field. Though

tetrahedral [4] or 3D rooftop functions [5] do not produce

fictitious charge, a second set of basis functions would be

needed to represent the surface conduction currents; and to the

author’s knowledge, neither basis function has been employed in

a guided wave analysis. We propose a novel volume polarization

formulation that offers significant advantages over the previous

approaches. The versatility and accuracy of the approach are

then demonstrated though the analysis of representative

structures.

MODELING THE DIELECTRIC

The dielectric region is first replaced by an equivalent

structure that supports surface, as opposed to volume, currents.

The same surface current basis functions can therefore be used

to represent both the polarization current in the dielectric atid
the currents on any conductors. This offers mathematical

simplicity and further, allows us to make use moment method

solutions already available in the literature. Second, the

presence of fictitious charge can be avoided by a proper choice

of basis function (rooftop function).

To represent the volume polarization with surface currents,

the dielectric region is replaced by a 3D version of the thin-wall

mechanism Barrington and Mautz employed to model dielectric

shells [6]. As shown in Fig. 1, the dlelectnc is subdivided into

sections along the Cartesian coordinates, so that the region is

now comprised of 3D cells having dimensions rX, ?), and 7,. If we

conceptually think of the dielectric material as being pushed out

from the center of each cell until it is compressed to zero

thickness on the celf walls, a new structure is formed that is
composed onfy of these zero-thickness cell wafls. During

compression, as the wafl thickness, 8, goes to zero, the dlelectnc

constant of the material in the wall goes to infhity as 1/6.
Provided the grid is sufficiently fine with respect to wavelength

and to feature size, and provided that an appropriate sheet

impedance is used to describe the cell walls, this new structure is

electrically equivalent to the solid dlelectnc. (We justify this

equivalence in the next section.) Since the dielectric and its

cefhtlar replacement are equivalent, we proceed to model not the

sofid dielectric but the equivalent structure. Because the celf

walls have zero thickness,, the currents that flow are precisely the

2D, surface currents that we desire.

JUSTIFICATION OF CELLULAR REPLACEMENT

The purpose of this section is convince the reader, through

related examples and physical reasoning, that the cellular

replacement is valid, that the accuracy of the solution technique

is related to grid size, and that no formal proof is required.

The use of 2D currents to model 3D polarization currents is

analogous to the modeling of a surface by a wire grid [7]. In

wire-grid models, lD basis functions are used to represent a 2D
region. A serious drawback exists with wire grid modeling,

however, because the field at the surface of a line current is

singular. To circumvent this problem, the wires must be given
an effective radhts, and thk may be accomplished by testing the

electric field at points radiafly offset from their centers.

Unfortunately, results are sensitive to the wire radius; fine

tuning is often required to get reasonable results. Consider now

a 3D grid of resistors that might be used to represent a resistive

volume for the purposes of a current flow analysis.

Such a grid is actually nothing more than a wire-grid model of

the volume, where the resistive material is lumped in 1D
fitaments that intersect at points. The value of each retistor
could be taken as that across a 7X-by-7,-by-T. cell, with the
direction of current flow determining which cell dimension (7,,
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Dielectric subdivision, with one ceU removed for illustrative

purposes.

TY, or r,) serves as the length and which others form the area for

a paraflel plate resistance calculation. Now, if we used an array

of zero-thickness rectangular sheets instead of fiiaments to

model the volume, we would be employing the celfular

replacement dkcussed earlier, except that it would apply to a

resistive, not dielectric, volume. Each celf waif, in this case,

would have to be attributed appropriate sheet resistances.

To solve electromagnetic problems with such grids, we can

develop moment method solutions by applying the electric field

boundary conditions; we would do this near the surface of each

fdament for a wire-grid model and at the surface of each celf

wall for the cellular model. The use of 2D surfaces to model a

volume is superior to a wire grid model, because the field of a

surface current is not singular; the cellular approach does not

require the fine tuning that a wire-grid model does.

Regarding the accuracy associated with the use of such grids,

consider first the wire-grid resistive model. From experience, we

know that for DC analyses we can achieve any desired degree of

accuracy by chuosing a fine enough grid. We would expect the

same for the celfular model. Based on our understanding and

experience with moment techniques, we expect that for an

electromagnetic analysis, the wire-grid model, if properly

formed, would also give improved accuracy as the grid size is

reduced. We have no reason to believe that this would not be
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the case for the celfular model, which as described above is

superior to the wire-grid model. We will further support this

claim through numerical results.

In a sense, two sources of error exist in our approach; that

associated with the celhdar replacement and that associated with

solving for the field of the equivalent structure. Both errors

should approach zero as the grid size is reduced. To find the

appropriate grid size, we compare numerical results against

others in the literature and perform numerical convergence

studies. We wilf show that even a relatively coarse grid gives

results that range from excellent for purely dielectric structures,

to welf within engineering accuracy for composite structures.

Many solution techniques involve grids; we just choose to apply

a grid prior to the numerical solution stage.

As a further justification, consider the dielectric composition

of high speed coaxial cable. Teflon is impregnated with air

bubbles to reduce its effective dielectric constant. For all intents

and purposes, at typical frequencies the dielectric appears

homogeneous. This provides a practical example of an

inhomogeneous material that is electrically equivalent to one that

is homogeneous. Other examples can be found in the study of

artificial dielectrics.

CHOOSING A SHEET IMPEDANCE

We chose a sheet impedance (or equivalently the surface

impedance because the cell walls have zero thickness) such that

the impedance is the same between two planes that sandwich a

celf of either the solid dielectric or celfular replacement and

include only that contribution related to the volume polarization,

or in other words, we omit the free space contribution [3]. From

Fig. 1, each celf wall is associated with two surface impedances.

The surface impedance along x, R,x, is given by

R,X=2(; +~)/U@&o(@)l (1)

where o is the angular frequency, COis the permittivity of free

space, e, is a relative dielectric constant and exp(jat) is the time

dependence. Through permutation of x,y, and z, (1) also gives

the surface impedances along y and z, namely R,y and R,,. For

walls common to two celfs, the impedance would be an

appropriate paralfel combination. LOSSY dielectrics (or for that
matter, lossy conductor volumes) could be handled through

appropriate choice of a complex permittivity.

The electric field boundary condition, applied over each

dielectric celt wait and conductor surface, is

E–J, R,=O (2)

where E is the tangential electric field, J, is the surface current

density, and R, is the appropriate surface impedance. For

dielectric volumes, R, is either R.x, R,y, or R,:; for perfect

conductors, R. is zero, but for imperfect conductors it may be

determined through skin-effect considerations.



ROOFTOP REPRESENTATION AND GUIDED WAVE

FORMULATION

On a dielectric or conductive surface, both fufj- and

half-rooftops [8-10] (Fig. 2) may appear. To guarantee a

smoother current distribution, we force the current to be

continuous around bends by combining half-rooftops to form

corner functions (Fig. 3). Internal to dielectric volumes are

edges, or junctions, where three or four cell walls may intersect.

At an external edge, only one corner function is needed (Fig.

3a). At three- and four-junctions, respectively, two and three

comer functions are used, as shown in Fig. 3b,c. Because

current flows continuously around each corner function, the

total current into a junction must be zero; using more than two

and three corner functions, respectively, would overspecif y the

current and ultimately lead to a singular matrix.

The guided wave formulation is the same one already

described in the fiteratnre [8,9,1 1,12], except for the inclusion of

R, in equation (2). An appropriate unit celf is defined for the

structure, and a moment method solution is developed that leads

to a eigenvalue matrix equation of the form

Z(kx) I = 0, (3)

where k. is the propagation constant or eigenvalue, Z is an

impedance matrix, and I is a column vector of current

coefficients. A Newton search is employed to find k:, which

must satisfy det(Z) =0, and then substituted back into (3) to

obtain the current dktribution. In the solution, the unit cell is

divided in SX, SY, and S, along the x, y, and z d~ections,

respectively.

In the following examples, propagation is along the x

direction. Rooftop current elements represent the currents in

the x-y, y-z, and x-z planes. For the 2D structures, currents

appear only on the x-z and x-y planes and only one subdivision

along x is used (S,= 1); the x-directed currents will be

represented only by full rooftops along the x duection.

NUMERICAL RESULTS AND DISCUSSION

The frost example is a coaxiaf cable filled with a dielectric

material having e,= 100, with the inside conductor having square

crosssection and side b and the shield having square crosssection

and side 2b. For b/&= O.00067 (ie, low frequency), kx and the

per unit length capacitance C were calculated for various grid

sizes. As the grid in the crosssection is made finer, from a

4-by-4 to a 32-by-32 subdivision, kx/~ monotonically decreases

from 10.95 to 10.04 and C decreases from 106.1 pF/cm to 91.4

pF/crn, the exact solution, based on TEM propagation and 2D

capacitance calculation, is kJ&= 10 and C = 90.49 pF/cm. In

the above, ~ and & are the wavevector and wavelength in free

space, respectively. The polarization charge in the dielectric, as

expected for a homogeneous medium, is negligible.

alFull rooftop
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Figure 2. A section of conductor showing fulf snd Indf-rooftop elements

and integration path.
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Figure 3. Representation of juaction current. a) At exterfml edge. b)

At three-junction. c) At four-junction.

The next structure considered is the microstrip of Fig. 4,

which dhplays an interesting peak in effective dielectric constant

%n that is not predicted from static capacitance calculation. A

300-by-4-by-l grid yields agreement to within four percent of

that obtained using the approach of Gurel [1]. A square

dielectric waveguide (Fig. 5) is then analyzed and compared

with the results of Goefl [2]. A similar, but hoflow structure.

(hoflow region is a/2 by a/2 and centered) is also analyzed. A

periodic array of holes is then introduced into the solid

waveguide, with the first stopband plotted in the figure. The

grid used corresponds to an 8-by-8 -by-1 breakup for the 2D

problems, and an 8-by-8 -by-4 breakup for the 3D problem. As

expected, for wavelengths below that corresponding to the

stopband (at 1.75 on the independent axts), this structure’s

propagation constant fafk between that for the solid and hollow
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F~e 5. Propagation coastant for square dielectric wavegaide with and

without periodic array of holes (6,=2.25).

cases. Near the stopband, as also expected, the curve rises

dramaticafiy.
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